What's new

Welcome to W9B - Most Trusted Web Master Form By The Web Experts

Join us now to get access to all our features. Once registered and logged in, you will be able to create topics, post replies to existing threads, give reputation to your fellow members, get your own private messenger, and so, so much more. It's also quick and totally free, so what are you waiting for?

Materials Discovery And Design By Means Of Data Science And Optimal Learning

Farid

Change Here
Gold
Platinum
Silver
Joined
Aug 2, 2022
Messages
124,513
Reaction score
3
Points
38
0   0   0
368zxeat0lnd.png

English | PDF,EPUB | 2018 | 266 Pages | ISBN : 3319994646 | 21.89 MB​

Materials Discovery and Design (Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes) (2018)
Catergory: Science, Engineering, Physics, Nonfiction
Publisher: Springer International Publishing
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate.
The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

🌞 Contents of Download:
📌 3319994646.epub (Turab Lookman, Stephan Eidenbenz, Frank Alexander, Cris Barnes) (2018) (10.17 MB)
📌 3319994646.pdf (Turab Lookman) (2018) (11.72 MB)

vAvBU3y.gif

⭐Materials Discovery And Design By Means Of Data Science And Optimal Learning ✅ (21.89 MB)
NitroFlare Link(s)
Code:
https://nitroflare.com/view/CCE8D56C1E72FFA/Materials.Discovery.And.Design.By.Means.Of.Data.Science.And.Optimal.Learning.rar?referrer=1635666
RapidGator Link(s)
Code:
https://rapidgator.net/file/0f665932779381080bdbf509fdc4738b/Materials.Discovery.And.Design.By.Means.Of.Data.Science.And.Optimal.Learning.rar
 
Top Bottom